Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/974
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Título : A modelling approach for offshore wind farm feasibility with respect to ecosystem-based marine spatial planning
Autor : Pinarbasi, Kemal; Galparsoro, Ibon; Depellegrin, Daniel; Bald, Juan; Perez-Moran, German; Borja, Angel
Citación : SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 667, 306-317
Resumen : Demand for renewable energy is increasing steadily and regulated by national and international policies. Offshore wind energy sector has been clearly the fastest in its development among other options, and development of new wind farms requires large ocean space. Therefore, there is a need of efficient spatial planning process, including the site selection constrained by technical (wind resource, coastal distance, seafloor) and environmental (impacts) factors and competence of uses. We present a novel approach, using Bayesian Belief Networks (BBN), for an integrated spatially explicit site feasibility identification for offshore wind farms. Our objectives are to: (i) develop a spatially explicit model that integrates the technical, economic, environmental and social dimensions; (ii) operationalize the BBN model; (iii) implement the model at local (Basque Country) and regional (North East Atlantic and Western Mediterranean), and (iv) develop and analyse future scenarios for wind farm installation in a local case study. Results demonstrated a total of 1\% (23 km(2)) of moderate feasibility areas in local scaled analysis, compared to 4\% of (21,600 km(2)) very high, and 5\% (30,000 km(2)) of high feasibility in larger scale analysis. The main challenges were data availability and discretization when trying to expand the model from local to regional level. The use of BBN models to determine the feasibility of offshore wind farm areas has been demonstrated adequate and possible, both at local and regional scales, allowing managers to take management decisions regarding marine spatial planning when including different activities, environmental problems and technological constraints. (C) 2019 Elsevier B.V. All rights reserved.
Palabras clave : Bayesian belief network; Renewable energy; Site identification; Trade-off; Decision support tools; BAYESIAN BELIEF NETWORK; MANAGEMENT; ENERGY; FRAMEWORK; IMPACTS; BIODIVERSITY; SERVICES; TOOLS; PERSPECTIVE; INTEGRATION
Fecha de publicación : 2019
Editorial : ELSEVIER SCIENCE BV
Tipo de documento: Article
Idioma: 
DOI: 10.1016/j.scitotenv.2019.02.268
URI : http://dspace.azti.es/handle/24689/974
ISSN : 0048-9697
E-ISSN: 1879-1026
Patrocinador: VAPEM project - Fisheries and Aquaculture Directorate of the Basque Government
AZTI
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.