Please use this identifier to cite or link to this item:
Files in This Item:
There are no files associated with this item.
Title: Links between data on chemical and biological quality parameters in wastewater-impacted river sediment and water samples
Authors: Martinez-Santos, Miren; Lanzen, Anders; Unda-Calvo, Jessica and Martin, Iker; Garbisu, Carlos; Ruiz-Romera, Estilita
Citation: DATA IN BRIEF, 2018, 19, 616-622
Abstract: In many urban catchments, the discharge of effluents from wastewater treatment plants (WWTPs), as well as untreated wastewaters (UWWs), presents a major challenge for the maintenance of river sediment and water quality. The discharge of these effluents cannot only increase the concentration of metals, nutrients and organic compounds in fluvial ecosystems, but also alter the abundance, structure and function of river bacterial communities. Here, we present data on chemical and biological quality parameters in wastewater impacted and non-impacted river surface sediment and water samples. Overall, the concentration of nutrients (inorganic nitrogen) and some heavy metals (Zn, Ni and Cr) was positively correlated with the nirS/16S rRNA ratio, while nirK- and nosZ-denitrifler populations were negatively affected by the presence of ammonium in sediments. Bacterial community structure was significantly correlated with the (i) combined influence of nutrient and metal concentrations, (ii) the contamination level (non-impacted vs. impacted sites), (iii) type of contamination (WWTP or UWW), and (iv) location of the sampling sites. Moreover, the higher abundance of five genera of the family Rhodocyclaceae detected in wastewater-impacted sites is also likely to be an effect of effluent discharge. The data presented here complement a broader study (Martinez-Santos et al., 2018) 111 and they are particularly useful for those interested in understanding the impact of wastewater effluents on the abundance, structure and function of river bacterial communities involved in nitrogen cycling. (C) 2018 The Authors. Published by Elsevier Inc.
Keywords: Wastewater; River sediment; Nutrients; Metals; Denitrifying genes; Rhodocyclaceae
Issue Date: 2018
Type: Article; Data Paper
Language: English
DOI: 10.1016/j.clib.2018.05.068
ISSN: 2352-3409
Funder: Ministry of Economy and Competitiveness [CTM2014-55270-R]
Basque Government [IT1029-16]
University of the Basque Country (UPV-EHU) [UFI11/26]
Appears in Publication types:Artículos científicos

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.