Original Article

In situ target strength of bigeye tuna (Thunnus obesus) associated with fish aggregating devices

G. Boyra, G. Moreno, B. Orue, B. Sobradillo, and I. Sancristobal

Azti-Tecnalia, Muellle de la Herrera, Zona Portuaria s/n – 20110 Pasaia, Gipuzkoa, Spain
International Seafood Sustainability Foundation (ISSF), 1440 G Street NW, Washington, DC 20005, USA
CLS, Space Oceanography Division, 11 rue Hermes, 31520 Ramonville, France

*Corresponding author: tel: + 34 667 174 436; e-mail: gboyra@azti.es.

Bigeye tuna (Thunnus obesus) is an important commercial fish species, which aggregates around fish aggregating devices (FADs) together with other tropical tuna species. Acoustics is the main technology used by fishers and scientists for the location and quantification of tunas at FADs. However, currently it is not possible to reliably discriminate between the different tropical tuna species that are found together at FADs using acoustic methods, which hampers the development of selective fishing needed to preserve some of the tropical tuna species for which overfishing is occurring. One of the prerequisites for species discrimination is to know the target strength (TS) of each species at different frequencies. This paper measures in situ TS values and explores the frequency response of bigeye tuna at FADs in the central Pacific Ocean using three different acoustic frequencies. For the range of body length caught (40–100 cm), the obtained b_{20} values were -65, -66, and -72 dB for 38, 120, and 200 kHz, respectively. The decreasing frequency response pattern obtained for this swimbladder bearing species contrasts with the opposite pattern previously observed for skipjack tuna (bladder-less), the most abundant tuna species found at FADs, hence allowing the potential for discrimination between the two species.

Keywords: acoustics, bigeye, biomass, FAD, frequency response, selectivity, target strength, tropical tuna

Introduction

Bigeye tuna (Thunnus obesus) is a high value commercial species present in the subtropical and tropical areas of the Atlantic, Indian, and Pacific Oceans. Bigeye can be observed either in free schools or associated with floating objects. Juvenile bigeye are caught on the surface by a range of gears including handline, ringnet, and purse-seine and are used mainly for canning, whereas most of larger/older fish are caught by longline fishery for the sashimi market.

Juveniles of bigeye tuna are normally caught, along with skipjack (Katsuwonus pelamis) and juvenile yellowfin tuna (Thunnus albacares), associated with fish aggregating devices (FADs), which are artificial floating objects built by fishers to aggregate tuna (Kingsford, 1993; Parin and Fedoryako, 1999). Nowadays FADs are geolocated with a buoy equipped with an echosounder to provide remote estimates of the amount of tuna aggregated around the FAD (Lopez et al., 2014). Currently, catches around FADs represent around 65% of the tuna catches of purse-seiners (average for the three tropical oceans; Scott and Lopez, 2014).

In the eastern Pacific Ocean, all bigeye indicators, except for catch, show strong trends over time indicating increasing fishing mortality and reduced abundance (Xu et al., 2018). In the Western and Central Pacific Fisheries Commission, recent assessment of the bigeye stock showed a more optimistic status for bigeye, compared with prior assessments, indicating that overfishing is likely not occurring and that the stock is not being overfished. In the Atlantic Ocean, the latest stock assessment indicated that overfishing is occurring and that the stock is in an overfished state.
Only in the Indian Ocean the stock of bigeye tuna is estimated to be in good condition (International Seafood Sustainability Foundation, ISSF, 2017).

Stock assessment requires a substantial amount of information. Data on retained catch, discards, catch per unit of effort, and size compositions of the catches from different fishery are typically used. Several assumptions regarding processes such as growth, recruitment, movement, natural mortality, and fishing mortality, are also done. The interpretations of stock status are strongly dependent on those assumptions.

Because of concerns about stock status of bigeye tuna in the different regions, as well as the uncertainty derived from the assumptions in stock assessment, scientist and managers are faced with the need to find new direct data sources and biomass estimates to complement current stock assessment. Direct estimates of abundance are already undertaken in other fishery and have been proven to be effective to complement traditional stock assessment and inform management (e.g. Massé et al., 2018). In the case of tropical tuna, biomass based on delayed echosounder buoy data could also be used to develop direct indices of tuna abundance (as proposed by Capello et al., 2016; Moreno et al., 2016; Santiago et al., 2017). FADs do not only aggregate bigeye tuna: they aggregate other tuna species, such as skipjack, which is the main target species of purse-seiners working with FADs, and yellowfin, so that the three species can regularly be found together in a single FAD.

Acoustics used by fishers may represent one of the key tools not only to obtain direct indices of tropical tuna abundance, independent from catch data, but also to discriminate tuna species found at FADs before the net is set. One of the prerequisites to discriminate tuna species and assess their biomass is knowing the frequency of wind (Beaufort 3) and 1–1.5 m of swell. Acoustic data were collected with a Simrad EK60 echosounder with 38, 120, and 200 kHz split-beam transducers, focused vertically (Figure 1) and working with a pulse duration of 0.512 ms (Table 1). The calibration was done at the beginning of the survey, following the standard target procedure (Demer et al., 2015) with a tungsten carbide sphere of 38.1 mm.

Catch data collection

Purse-seine sets, performed with a 1800 m length × 310 m height gear, were followed by intensive sampling of the catch (between 1 and 2 tonnes per set) once the aggregation was lifted on-board. Fish samples were selected randomly to avoid bias. Species were identified and each fish in the sample measured to the nearest centimetre on flat measuring boards. The weights of sampled individuals were estimated using length–weight relations available for each species (Parks et al., 1982; Caverivière, unpublished data). These proportions by weight were then extrapolated to the total tonnage of each set, as estimated by the fishing master. The sets with more than 90% in weight (about >75%) of bigeye (Table 2) were selected for acoustic analysis to obtain TS-length relationship and acoustic frequency response.

Data analysis

Acoustic data were processed from the beginning of the set until the moment in which the net was visible in the echogram. To reduce echoes from bycatch fish species, SV and TS data were excluded if shallower than 25 m (Muir et al., 2012; Forget et al., 2015). Then, the TS echograms at each frequency were processed using a single target detection algorithm (Simrad, 1996; Soule et al., 1997) with the following settings: minimum threshold = −80 dB; normalized pulse durations = 0.9 to 1.5; maximum off-axis angles = 3°; and maximum standard deviations of phase = 0.6°.

A series of target selection filters (a school masking, a fish tracking, and a high-density filter) was applied to retain single targets of tuna and remove the echoes attributed to plankton and micronekton. The single target detection algorithm, the school processing, and the fish tracking were applied using Echoview (Myriax Inc.) software. The remaining data processing was carried out on the exported csv files using R (R Core Team, 2014).

School masking. A school detection algorithm (Lawson et al., 2001) was used to retain the main aggregation. The rejected echoes from outside the aggregation were likely echoes of plankton and/or micronekton. After smoothing by a 5 × 5
convolutions, “schools” (i.e. the main aggregations around the FAD) were selected using: minimum total school length and height $= 0.2$ m; minimum candidate length and height $= 0.1$ m; and maximum vertical and horizontal linking distances $= 5$ and 20 m, respectively. The school detec-
tion was applied on TS echograms, and data from within the schools were attributed to tuna (Figure 2).

(ii) Fish tracking. A fish tracking analysis (Blackman, 1986), which consists in grouping targets according to their mutual spatial and temporal proximity, considering that they are successive detections of the same fish in a track, was applied to the TS single targets. The fish tracking was set up retaining only fish that had been spotted for at least three times in three different pings, allowing five missing pings in a track.

(iii) High-density (HD) filter. We filtered those tracks located in areas of the echogram with higher densities of fish individuals, thus with higher probability of failure in detecting multiple targets of the single target detection algorithm. For this, the echogram was divided into a grid of regularly spaced cells (20 pings $\times 10$ m) and the number of fish per echo integrated volume in each cell was determined as:

$$N_V = (s_V/\sigma_{bs}) V,$$

where s_V is the volume backscattering coefficient, σ_{bs} the backscattering cross section (Maclennan et al., 2002) and V is the sampled volume corresponding to each cell, calculated as the volume of the ideal conic section of sphere described by the beam in each ping multiplied by the number of pings N_p in each cell:

$$V = \left(\frac{2\pi r^2}{3}\right) N_p (1 - \cos(\theta/2)) (z_{max}^3 - z_{min}^3),$$

where θ is the beam angle of the transducers, and z_{min} and z_{max} are the depth limits of the cell. In order to provide an objective criterion for establishing a fish density threshold (and avoid the circularity implicit in the application of a density threshold before you know the TS value that allows you to calculate the actual den-
sity) the rule by Gauthier and Rose (2001) was applied, based on the comparison of the number of fish in a given volume, N_V, and the number of single targets detected by the algorithm, T_V, in the same volume. We represented T_V against N_V and the threshold was chosen at the point where an increase in N_V was not accom-
panied by a corresponding increase in T_V, i.e. when the number of single targets reached saturation because of increasing probability of detecting multiple targets (Figure 3). As the method is

![Figure 1. Sample echogram of set number 6 showing S_v (in dB) for the three frequencies, 38, 120 and 20 kHz from left to right. Each panel shows a window of ≈ 500 pings $\times 100$ m. Upper panels show the raw echograms and lower panels show the echograms after plankton/micronekton filtering.](image_url)

![Table 1. Configuration of the acoustic equipment and calibration parameters.](table_url)
Table 2. Summary of the main tuna species composition in weight (w) and in numbers (n) of the two used fishing sets.

<table>
<thead>
<tr>
<th>Set</th>
<th>Catch (tonnes)</th>
<th>Sample_w (kg)</th>
<th>Sample_n</th>
<th>BET_w (%)</th>
<th>YFT_w (%)</th>
<th>SKJ_w (%)</th>
<th>BET_n (%)</th>
<th>YFT_n (%)</th>
<th>SKJ_n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>25</td>
<td>1783</td>
<td>186</td>
<td>99</td>
<td>0</td>
<td>5</td>
<td>94</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>95</td>
<td>3102</td>
<td>499</td>
<td>91</td>
<td>2</td>
<td>21</td>
<td>75</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

FAO codes used for the species: SKJ, skipjack; BET, bigeye; YFT, yellowfin tuna.

Figure 2. Histogram of body length of the main tuna species captured in each set. Species are named according to their FAO codes: BET for bigeye tuna, SKJ for skipjack, and YFT for yellowfin tuna.

insensitive to the actual σ_{ls} used to estimate N_Y (Gauthier and Rose, 2001), a preliminary value (the mean of the unfiltered σ_{ls} values) was used; then, after the filtering process, the N_Y values were rescaled according to the corrected TS values for consistent visualization. A windowing smoothing process was applied by grouping the fish densities, N_Y by ranges to help highlighting the pattern (Figure 3). Once estimated the N_Y threshold to define HD areas, an HD mask was created, and those tracks totally or partially overlapping HD areas were removed (Figure 4).

Determining $TS(L)$ and $TS(f)$ relationships

The relation between TS and fork length (L; cm) is normally assumed to be (Simmonds and MacLennan, 2005):

$$TS = a \cdot \log(L) + b,$$

(3)

In our case, it was modeled as:

$$TS = 20 \cdot \log(L) + b_{20} + \epsilon$$

(4)

i.e. considering a fixed slope of 20 because of the small number of sets (two) and adding an error term ϵ to account for the natural variability of the TS. For each frequency, b_{20} was estimated by fitting the observed TS distributions of in situ bigeye and the predicted TS distributions based on the measured L from the purse-seine catches, using a curve fitting method similar to that of MacLennan and Menz (1996) or Gastauer et al. (2017).

The bigeye tuna body length distributions were converted to predicted TS distributions using Equation (4; Figure 5). For the error term, two alternative curve types were used: a simple normal function, $\epsilon = N(\mu = 0, SD)$, and a twofolded (skewed) normal, $\epsilon = N_s(\mu = 0, SD, s)$, included to increase the accuracy of the estimated b_{20} values in cases of asymmetric observed TS distributions. An optimization process was run for the parameters of Equation (4) using sequences of b_{20} (from -80 to 0 in intervals of 0.1 dB), standard deviation (SD; from 0 to 20 in intervals of 0.1 dB) and, in the case of the twofolded normal, percentage of skewness, s, (from -100% -left sided- to 100% -right sided- in intervals of 5%), being the resulting functions fitted to the observed TS distributions. For each curve type, all the combinations of parameters were computed and the one with the highest coefficient of determination was chosen. Then, the choice of curve type was based on AIC (Akaike Information Criterion, Akaike, 1973) to allow penalization for the extra parameter of the twofolded Gaussian. The curves obtained with this optimization procedure were the proposed predicted TS distributions. Standard deviations, confidence intervals of the TS distributions (Cumming et al., 2007), and coefficient of determination values of the fit between observed and predicted TS distributions were calculated to evaluate the goodness of the obtained $TS(L)$ relationships.

The $TS(f)$ relationship was calculated as the succession of b_{20} values at the three available frequencies, for all the sets together as well as per individual set. This was done to assess the potential incidence in cases of relatively low predominance of bigeye tuna, because of the relatively weak condition to consider a set monospecific (90% in weight).

Distribution of TS values along the echogram

To test the validity of our analysis in the difficult observation environment of the FADs (concerning mainly potential incidence of bycatch and the efficiency of HD filtering) we checked the spatial distribution patterns of the data. We plotted the distribution of TS values against time and depth, to show whether they distributed randomly in the echograms or were subjected to any spatial distribution patterns, a skewed or stratified distribution potentially indicating some kind of selection.

Results

Size distribution

From the 20 sets done in the survey, only two (sets 6 and 7) had more than 90% in mass of bigeye tuna (i.e. 79%, Table 2) and were hence used for this study. The range of average bigeye tuna sizes (10 and 90% quantiles) was 57–90 and 56–89 cm, respectively for sets 6 and 7 (Table 3). In each set, the length
distributions were bimodal with each mode centred in ~62 and ~89 cm (Table 3, Figure 2).

TS filtering steps

The initial TS distributions had multiple modes at all frequencies but after applying the school masking, the lower TS modes (presumably plankton and/or micronekton) were removed, increasing the mean value in more than 5 dB and changing the TS distributions into monomodal ones (Figure 6). The correction was higher for lower frequencies, especially the 38 kHz, where the plankton layers were denser (Figure 1). The fish tracking step did not reduce further the mean TS value, but it decreased variability of the TS values by ~2 dB. The HD filtering threshold was set at 30 fish, based on departure from monotonous increase of \(T_v \) against \(N_v \) (Figure 3) and decreased the mean TS by ~2 dB at all frequencies. Overall, the TS filtering steps reduced the number of single targets by more than one order of magnitude at all frequencies. The ranges of TS values (0.1 and 0.9 quantiles) observed after all the filtering procedures were \((-39 \, \text{dB}, -24.5 \, \text{dB}), \, (-37.5 \, \text{dB}, -25 \, \text{dB}) \) and \((-39.5 \, \text{dB}, -29 \, \text{dB})\) for 38, 120, and 200 kHz, respectively (Table 3).

TS-\(L \) and TS-\(f \) relationships

The fit between modelled and observed TS distributions had coefficients of determination well over 80% (Table 3; Figure 6). The fitted TS-length relationship in Equation (1) had intercepts of -65, -66, and -72 dB respectively at 38, 120, and 200 kHz, with uncertainties of ~5.5, 4.5, and 4 dB. The frequency response was flat or slightly decreasing between 38 and 120 kHz and declined over 6 dB at the highest frequency 200 kHz (Figure 8). When the two sets were considered individually, set 7 yielded results ~1 dB higher at all frequencies and virtually the same relative frequency response as set 6.

Distribution of TS values along the echogram

The TS vs. time scatterplot showed that the mean TS value did not show trends along time (Figure 9). The TS vs. depth showed that the TS values were spread over the full depth range of the aggregation (Figure 10). The HD filtering removed the highest TS values, but there was no selection pattern according to depth. The filter was able to remove those areas with higher density while leaving unaltered nearby areas with lesser number of individuals (Figures 4 and 10).

Discussion

This work presents TS\((L)\) and TS\((f)\) relationships for bigeye tuna associated with FADs in a scientific study conducted from a fishing vessel during its regular commercial activity. There are both advantages and disadvantages in performing *in situ* measurements of TS following this procedure. The option of working from a fishing vessel during commercial activity facilitates the encounter with FADs and represents a cost-effective way to study these highly migratory species that can be found spread over huge oceanic areas of all oceans. The estimation of TS is done *in situ*, meaning that it provides measurements in the same conditions in which we intend to estimate their abundance. According to Simmonds and MacLennan (2005), there are three main potential problems when measuring TS of individual fish *in situ*: (i) representativity of biological samples, (ii) representativity of acoustic targets, and (iii) discrimination between single and multiple acoustic targets.

Representativity of biological samples

In this work we benefitted from the high degree of certainty of the species and size composition of the measured targets, given that the aggregation is normally completely caught after the acoustic measurements (Boyrà et al., 2018). There were only two sets where there were predominant catches of bigeye tuna, and there were still appreciable amounts of skipjack tuna in set 7 (Figure 2 and Table 2). Nevertheless, the relative frequency response was the same in both sets despite the larger proportion of skipjack in set 7 (Figure 7), thus suggesting that the incidence of skipjack in the measured frequency response of bigeye tuna was not appreciable. In our opinion, given the consistency between results of the two sets, both are reliable and should be considered for the final estimation of this analysis and this is what we propose in Table 3. Nevertheless, results from both independent sets are also provided, and the reader can compare them.

One of the challenges we faced is the wide length distribution of tuna found typically at each FAD, which causes dispersion in the observed TS distributions (Figure 7, Table 3) and, hence, uncertainty in the \(b_0 \) estimation. We deal with this limitation by applying a curve fitting method to compare the observed and predicted TS distributions (as in MacLennan and Menz, 1996; Gastauer et al., 2017), a method in which all size and TS classes contribute to the fitting, in contrast to other methods that fit central values (i.e. the mean length against the averaged TS value in the linear domain, as in Clay and Castonguay, 1996; Ona, 2003; Madirolas et al., 2016 among many other examples). The application of the curve fitting method allowed providing measurements of goodness of the adjustment \(R^2 \) over 80% in all cases,
We also provided confidence intervals for the estimated values (Table 3).

In this work, the fish length distributions were not only wide but also bimodal for bigeye (Figure 2), whereas the observed TS distributions were monomodal (Figure 7). There are two possible explanations for this: (i) the two length classes were fused into a single mode of observed TS values because of the natural variability of the TS or (ii) only one of the two length classes (typically the large one, supposed to have more chances to pass the single target detection criteria) contributed to the distribution of observed TS. In this case, we think that the first explanation is the most probable (as we justify below) and this work assumes it is true.

For the first explanation to be true, the natural variability of the observed TS must be high enough to dissolve the separations between individual length modes, which requires these distances...
The difference (about 30%) between them. In addition, they were using much larger individuals, whereas we are dealing with differences in size between both species, whereas we are dealing with two length modes to the observed distributions (5.5, 4.5, and 4 dB for 38, 120, and 200 kHz, respectively; Table 3) were higher than both the directly converted predicted TS values based on Equation (1; ~1.6 dB, Figure 5) and the distance between individual modes of the directly converted predicted TS distributions (~3.5 dB, Figure 2). This suggests that the first explanation is at least possible, and consistent with our observations. The larger variability of the observed TS values with respect to the directly converted ones agrees also with the known large variability of TS of even a single fish because of behaviour (Foote, 1980; Simmonds and MacLennan, 2005).

The alternative explanation (the contribution of only one of the two length modes to the observed TS distribution) was the option taken by MacLennan and Menz (1996) in their earlier work, where they found another case of a bimodal length distribution leading to a monomodal TS distribution. However, there are considerable differences between their work and the present study. In their case they were measuring rather small fish (~4 and ~16 cm length modes, respectively), with more than threefold (i.e. 300%) difference in size between both species, whereas we are dealing with much larger individuals (~62 and ~89 cm) and a much smaller difference (about 30%) between them. In addition, they were using a transducer with a rather wide beam angle (6.5° × 17°), i.e. sampling larger volumes than in our case (7° × 7°). Therefore, in their case it made sense ignoring the lowest mode because it would have a much lower probability of passing the single target detection algorithm. In our case, the assumption of equal probability of detection is much safer than removing the lower mode of ~50% of tuna individuals of 62 cm; the alternative assumption would be considerably stronger and thus, in our opinion, less likely to be correct.

Acoustic single targets’ discrimination and representativity

As not only tuna but also other non-tuna fish species (bycatch) as well as plankton and micronekton can be found at FADs (Bertrand et al., 1999a), a filter was applied to try to isolate tuna targets. The bycatch filter was based on observations done in acoustic tagging of non-tuna species at FADs (Muir et al., 2012), as has been applied by other authors (e.g. Lopez et al., 2016). The plankton or micronekton filter worked based on the aggregation structure of the echoes, removing those originated in scattering layers (Figure 1). This filter was the same as the plankton filter applied by Boyra et al. (2018) for skipjack tuna aggregations at FADs, and it seemed to be effective also in this case as it was able to remove the lowest modes of the TS distribution (Figure 5).
Perhaps the biggest challenge in this work was the high-density conditions because of the aggregative nature of tuna at FADs. It is a normal practice in TS analysis to avoid areas of high density whenever possible to avoid the risk of unresolved multiple targets (Soule et al., 1995, 1996; Barange et al., 1996; Ona, 1999). So perhaps one could think that, instead of focusing on the main aggregation, it would have been safer to remove the main aggregation and focus at its periphery. The problem is that it has been repeatedly reported that the periphery of FAD aggregations tends to be unrepresentative of the main catches: the upper part of the aggregation is frequently made of bycatch species (Muir et al., 2012; Forget et al., 2015) whereas at the bottom part are concentrated large individuals of yellowfin and bigeye that are not representative of the main tuna sizes found associated with FADs (as described by Moreno et al., 2008; Govinden et al., 2010; Muir et al., 2012; Lopez et al., 2016). The possibility of un-representativeness of the periphery of an aggregation was also pointed out by Simmonds and MacLennan (2005). Consequently, as most of the regular-sized tuna are located in the bulk of the aggregation, we focused our analysis in this area.

In order to avoid potential unresolved multiple echoes bias, a combination of two filters were used: a fish tracking (Blackman, 1986) plus a high-density filtering (Sawada et al., 1993; Gauthier and Rose, 2001). The HD filtering method, rather than discarding the full aggregation, allowed working on it while providing an objective and repeatable way of discarding selectively the parts with higher probability of multiple targets (Figure 4). The additional application of the fish tracking in the lowest density cells allowed obtaining the associated benefits of this technique (namely reducing the variability) while avoiding the risk of appearance of spurious tracks because of excessive proximity between targets. In an early version of this work, a different approach was applied to deal with potential multiple target bias, a bi-frequency simultaneity detection requirement (Conti et al., 2005). This was the same approach as that followed by Boyra et al. (2018) for skipjack tuna associated with FADs. The results with this early approach were
very similar ($b_{20} = -64$, -65.5, and -72 dB at 38, 120, and 200 kHz, respectively, i.e. within ~ 1 dB at all frequencies) to those presented here, but finally we opted by the new approach, combining HD and fish tracking, because of concerns related to potential effect of the depth on the efficiency of the bi-frequency method because of higher directivity of higher frequencies. Also, the fish tracking used in the new approach allowed reducing stochasticity. Similar approaches as this, combining various methods for mitigating multiple targets bias, have been recently applied in TS analysis (Scouling et al., 2016; Gastauer et al., 2017). The observed TS distributions show no patterns with depth (Figure 10), which is consistent with the expected TS response for a physoclist species as bigeye tuna (Magnuson, 1973; Bertrand et al., 1999b), able to compensate the pressure induced changes in swimbladder volume to maintain buoyancy at different depths.

Obtained TS values and TS-length relations

The obtained b_{20} values were -65, -66, and -72 dB at 38, 120, and 200 kHz (Table 3, Figure 8). Oshima (2008) obtained a 1.5 dB higher value ($b_{20} = -63.5$ dB) measuring isolated
individuals of bigeye tuna in a cage at 38 kHz. On the other hand, based on two previous experiments (Bertrand et al., 1999b; Josse and Bertrand, 2000), Bertrand and Josse (2000) modelled $TS = 24.3\log(L) - 73.3$ for a range of bigeye fork lengths from 50 to 130 cm at the same frequency. Forcing the slope of that relationship, for comparability, to the value of 20 and using the intermediate length of the range, 90 cm, it would represent a b_{20} of -64.7 dB, thus very similar to the value obtained in this study. Therefore, our result is in accordance with previously measured TS values at 38 kHz.

Because the volume within the purse-seine net decreases with time along the evolution of the net hauling manoeuvre, the density of the fish aggregation increases correspondingly. During our acoustic measurements in the purse-seine net, there was concern about whether this might have an impact on the measured TS values. However, the analysis of the evolution of the filtered TS values with time showed no clear pattern in this respect (Figure 9) thus indicating similar efficiency of the multiple targets filtering procedure along the duration of the set.

It is recommended that, whenever possible, TS-length relationships are measured without forcing the slope to 20 (Mcclatchie et al., 2003). In our case we had enough TS values (>5000 detections at each frequency, Figure 6) to correctly estimate a b_{20} in all cases. However, the availability of only two sets to make the regression between TS and L prevented us from trying to estimate the slope from these data (two points are clearly not enough to make a linear regression model). It is thus desirable that further work is done to try to establish the TS-length of this species without forcing the slope to 20.

In this work, we also obtained TS and b_{20} values at 120 and 200 kHz, resulting in a response that decreases with frequency (Table 3, Figure 6), which is typical of swimbladder bearing species (e.g. Fernandes et al., 2006). The fact that autumn from 120 to 200 kHz is steeper than that predicted by the typical models for swimbladdered species is not understood yet, but the discrepancy could be caused by target size/distance constraints of most models (Medwin and Clay, 1998), that are normally focused on small pelagic species and might thus not be valid for large fish sizes as those of tuna. In the near future, we intend to explore the

Figure 8. TS-frequency response of bigeye tuna (black), triangles representing set 6 and circles set seven. In grey squares, TS-frequency response of skipjack tuna, taken from Boyra et al. (2018). Error bars represent standard deviation.

Figure 9. Evolution of mean TS values per track with time (ping number) along the set duration. The lines represent loess smoothing to highlight the tendencies.
interpretation of these results by application of modelling using
the method of Fundamental Solutions, that has been successfully
applied to interpret TS measurements of other large pelagic spe-
cies (Pérez-Arjona et al., 2018). Given that the trend in the fre-
quency response obtained for bigeye is opposite to that of
skipjack tuna (Figure 7) this provides the means to discriminate
between these two species using a frequency response mask (e.g.
Korneliussen and Ona, 2003).

This work is part of a series of initiatives to achieve species and
sizes discrimination of tropical tuna species associated with FADs
(Moreno et al., 2019). As part of this initiative, TS-length and TS-
frequency relationships for skipjack tuna around FADs have been
recently published (Boyra et al., 2018). Most FADs normally have
simultaneous presence of the three main tropical tuna species, i.e.
bigeye, skipjack, and yellowfin, therefore, the next step would
comprise obtaining TS-f and TS-L of the third one, i.e. yellowfin
tuna (and, if necessary, of other potentially abundant bycatch
species). Currently, there are only published TS-L values for yel-
lowfin tuna at 38 kHz (Bertrand et al., 1999b) and therefore, next
step should be obtaining the TS-frequency and TS-length for yel-
lowfin tuna, to build proper acoustic masks to try to distinguish
between the three main tropical tuna species. Given the difficulty
of finding isolated or even predominant yellowfin tuna aggrega-
tions at FADs, the planned strategy with yellowfin will likely in-
volve ex situ measurements in a cage.

Figure 10. Vertical distribution of mean TS values per track in both sets. Dark circles represent those tracks that passed the high-density
filtering, whereas lighter triangles are those that did not. The lines represent loess smoothing to highlight the tendencies, solid for tracks that
passed and dashed for those that did not pass the HD filtering.

Funding
The research reported in the present document was funded by
the International Seafood Sustainability Foundation (www.iss-
foundation.org) and the Common Oceans ABNJ Tuna Project
(http://www.fao.org/in-action/commonoceans/projects/tuna-bio
diversity/en/) and conducted independently by the authors. The
report and its results, professional opinions and conclusions are
solely the work of the authors.

Acknowledgements
We thank the following organizations and people for their sup-
port of this work: the governments of Kiribati, Tuvalu, and
Tokelau, which permitted this research in their EEZs; Albacora
for allowing this work aboard F/V ALBATUN TRES; Fishing
Master Euken Mujika; the captain and crew; the divers and scien-
tists J. Filmalter and F. Forget are thanked for invaluable insight
about fish behaviour, vertical stratification, and non-target spe-
cies composition at FADs. Simrad is thanked for technical assist-
ance during this work. Sonia Sanchez and Andres Uriarte are
thanked for help concerning mixtures of Gaussian distributions.
We thank two anonymous reviewers as well as both editors
Richard O’Driscoll and Olav Rune Gude for careful and con-
structive criticism of the manuscript. This is paper number 925
from AZTI.
Target strength of bigeye tuna (Thunnus obesus)

2457

References

Downloaded from https://academic.oup.com/compositions/article/1197/7/2449/5537349 by AZTI FUNDACION user on 04 November 2020

Handling editor: Richard O’Driscol